KernelMemorySanitizer (KMSAN)

Signed-off-by: Alexander Potapenko <glider@google.com>

Dynamic Tools Team @ Google

Userspace tools:
* ASan, LSan, MSan, TSan, UBSan
* libFuzzer (coverage-based userspace fuzzer)
* control flow integrity in LLVM

* tens of thousands bugs in Google and opensource code

Kernel tools:
* KASAN, KMSAN, KTSAN (prototype)
* syzkaller (coverage-based kernel fuzzer)
* hundreds of bugs 1n the kernel (s)

MemorySanitizer (MSan)

* around since 2012

* detects uses of uninitialized values in the userspace

* found 2000+ bugs

* works on big programs (think Chrome or server-side apps)

See also:
"MemorySanitizer: fast detector of uninitialized memory
use in C++" by E. Stepanov and K. Serebryany, CGO 2015

KernelMemorySanitizer (KMSAN)

* detects uses of uninitialized values in the kernel

What one might think KMSAN does

int a;

int b = ¢ + a; // report reading of uninit a
or:

int p = a;

copy to user(u, &p, 4); // don't report since p is inited

This is useless: both false positives and false negatives!

What KMSAN actually does

int a;
if (flag)

a = 1; // initialized
b =c¢c + a; // not a "use"
if (flag)

copy to user(p, &b, 4); // use: don't report

What KMSAN actually does (contd.)

int x; // uninitialized

int a = x; // still uninitialized

copy to user(p, &a, 4); // use: report an error

KernelMemorySanitizer (KMSAN)

* detects uses of uninitialized wvalues 1n the kernel:
- conditions
- polnter dereferencing and indexing

- values copied to the userspace, hardware etc.

Example 1

struct config *update config(struct config *conf)
{
if (!conf)
conf = kmalloc (CONFIG SIZE, GFP KERNEL)
do update (conf) ;
return conft;

}

void do update (struct config *conf)

{

i1f (conf->is root) allow everything(conf);

Example 2

int socket bind(int sockfd, user struct sockaddr *uaddr,

int ulen)

struct sockaddr kaddr;

1if (ulen > sizeof (struct sockaddr) || ulen < 0)
return -EINVAL;

copy from user (&kaddr, uaddr, ulen);

return do bind(sockfd, &kaddr);

Example 3

void put dev name 32 (struct device *dev, user char *buf)
{
char name[32];
strncpy (name, dev->name, 32);
if (buf)
copy to user (buf, name, 32);

KernelMemorySanitizer (KMSAN)

* detects uses of uninitialized values in the kernel:
- conditions
- polnter dereferencing and indexing
- values copied to the userspace, hardware etc.

* almost working since April 2017

* found/fixed 13 bugs (and counting)

* based on MSan

* therefore requires Clang

KernelMemorySanitizer (KMSAN)

* detects uses of uninitialized values in the kernel
- conditions
- polnter dereferencing and indexing
- values copied to the userspace, hardware etc.
* almost working since April 2017
* found/fixed 13 bugs (and counting)
* based on MSan
* therefore requires Clang
* l]ife is too short to hack GCC "\ ("/) /°

Sample report (redacted)

BUG: KMSAN: use of unitialized memory in strlen
__msan warning32 mm/kmsan/kmsan instr.c:424
strlen lib/string.c:484
strlcpy lib/string.c:144
packet bind spkt net/packet/af packet.c:3132
SYSC bind net/socket.c:1370

origin:

__msan _set alloca origin4 mm/kmsan/kmsan instr.c:380
SYSC bind net/socket.c:1356

SyS bind net/socket.c:1356
origin description: ----address@SYSC bind

Shadow memory

Bit to bit shadow mapping
* struct page { ... struct page *shadow; ... };

* "1" means "poisoned" (uninitialized)
Uninitialized memory:

* kmalloc ()

* local stack objects

Writing a constant to memory unpoisons 1t

Shadow 1s propagated through arithmetics and memory accesses

Compiler instrumentation

$ clang -fsanitize=kernel-memory

adding code that:
* poisons local variables
* handles loads and stores
* propagates shadow through arithmetic operations
* passes shadow to/from function calls
* performs shadow checks

Poisoning locals

void foo () {
int a = 1;

char b[8];

Poisoning locals

vold foo () {
int a = 1;
__msan_unpoison(&a, 4);
char b[8];
__msan poison alloca(b, 8, "b");

Instrumenting loads and stores

vold copy(char *from, char *to) {
if (!from)
*to = -1;

} else {

*to = *from;

Instrumenting loads and stores

vold copy(char *from, char *to) {

if (!from)
*to = -1;
__msan store shadow 1(to, 0);
} else {
u64 shadow = msan load shadow 1 (from);
*to = *from;

__msan store shadow 1(to, shadow);

Shadow propagation

A=B+C == A' = B' | C'
A =B<<C == A' = B' << C
A=Bs&C == A' = (B' & C'") | (B'" & ~C) | (~B & C")

* helps to minimize the number of false positives

* somewhat similar to Valgrind, but working with SSA
registers at compile time
- we can leverage compiler optimizations

* operations are sometimes approximated for efficiency

Instrumenting function calls

int sum n(int n) {

if (n == 0) {
return 0O;
}

int sum rec = sum n(n - 1);

return n + sum rec;

Instrumenting function calls

int sum n(int n) {

kmsan context state *s = msan get context state();
int shadow n = s->argsl[0];
if (n == 0) {

s->ret = 0;

return 0;
}
int sum rec = sum n(n - 1);
s->ret = shadow n | s->ret;

return n + sum rec;

Adding shadow checks

if (1 >= 0)

res

{

ali];

Adding shadow checks

if (msan load shadow 4(&1i) & INT MIN)

__msan_warning() ;
if (1 >= 0) |
if (_ msan load shadow 4 (a) ||

~_msan load shadow 4 (&1))

__msan _warning();

u64 shadow = msan load shadow 4 (&a[i]);

res = al[i];

msan_store_shadow(&res, shadow) ;

Tracking origins

a = kmalloc(...);

g.; kmalloc(...);

memcpy (¢, b, sizeof(*b));
d = *a + *c;

if (d) ... // Which argument is guilty in the case of UMR?

Tracking origins (contd.)

when an uninit wvalue 1s allocated:

- put the stack into the stack depot (lib/stackdepot.c)
- for each 4 bytes of allocated memory, store the 4-byte
stack ID into the secondary shadow

when the memory 1s copied:

- create a new origin from the current stack and the
previous origin

when two values are used 1n an expression:

- take the origin of the first uninitialized operand

Handling non-instrumented code

* asm() 1in *.c:
- check that inputs are initialized
- outputs are unpoisoned
* can't instrument around 40 files:
- arch/x86/...
- mm/...
— *.S
* KMSAN SANITIZE filename.o := n
— no 1nstrumentation

- locals, function args, return values may be dirty

Closing the gap

* attribute ((no sanitize ("kernel-memory")))

- no shadow propagation, unpoison locals and stores

>(_

kmsan poison memory ()
- kmalloc ()
* kmsan unpolson memory ()
- copy from user()
- struct pt regs in interrupts
- RNGs
* kmsan check memory ()
- copy to user()
- hardware (send to network, write to disk)

What about kmemcheck?

* When did you last run kmemcheck?
- 1 commit fixing a bug from kmemcheck in 2017, 4 in 2014
- 1 false positive 1in 2016, 1 in 2014

* Throughput in " netperf -1 30°
- nodebug: 39056.37
- kasan: 5217.185
- kmsan: 478.96 (there's still room for improvement)
— kmemcheck: was 2000 times slower than nodebug in 2015

Long shot: taint analysis

* use shadow to indicate that a value came from an
untrusted source

* use origin to mark the place where this value was
obtained

* call kmsan check memory () at places where we expect
only trusted data

There's also another Clang tool, DFSan, which can help.

Long shot: fuzzing assistance

We already have instrumentation of comparison instructions
and switch statements 1n LLVM:

* for each comparison, insert instrument cmp(argl, arg2)

* 1f either argl or arg2 can be found in the input [1],
try to mutate that input

But the wvalue's presence in the input doesn't guarantee
the input actually affects this value!

[1] - or some f(argi) can be found in the input

Long shot: fuzzing assistance (contd.)

* polson each argument of each syscall and
assign a unilgque origin to 1t
* for each comparison:
1f (shadowl | shadow2)

instrument cmp (argl, shl, origl, arg2, sh2, orig2);
* mutate only the arguments that really affect argl or arg?2

Food for thought

CVE-2017-1000380: data race on /dev/snd/timer allows the
attacker to read uninitialized heap memory.

In fact, a user with access to the device was able to e.qg.
read the data another user wrote into a file or socket.

Can we do something to kill all uninit bugs?
(Something smarter than s/kmalloc/kzalloc ?)

Status

* code at https://github.com/google/kmsan

* currently using v4.12

* x86 64 only (but nothing really arch-specific)

* requires patched Clang (will get rid of the patches soon)
* planning to upstream by the end of 2017

"That's all folks!"

Can we combine KASAN and KMSAN?

A couple of requests

* please don't break Clang compilation
* please don't break our userspace tools

